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This paper describes a new numerical method for finding solutions to 
the ideal MHD equilibrium problem. The space of solutions thus found 
can have more than one bifurcation branch, depending on the tokamak 
being modeled. We suggest that the solutions which are difficult to 
obtain without the use of this technique correspond to equilibria which 
are difficult to maintain in the tokamak being modeled. First, this paper 
investigates, for a tokamak design with large poloidal field-shaping coil 
(PFC) to plasma distance, the bifurcated numerical solution curve as a 
function of flux loop position and relates this curve to the practical 
existence of ideal magnetohydrodynamic equilibria and practical 
tokamak design. In previous papers, some of the problems which could 
arise for large PFC-plasma distance were discussed. Then, using a 
regularization technique, it was shown that, for large PFC-plasma 
distance, the flux loops should be close to the PFCs for stable control 
if the full information from the flux loops is used. Here it is shown that, 
for large PFC-plasma distance, the structure of the equilibrium solution 
space becomes increasingly complex and desirable solutions become 
more difficult to attain as the flux loops are moved farther from the 
plasma. In order to explore this solution space numerically, it is 
necessary to obtain solutions for which the usual Picard iteration 
method is unstable. Here an extension of this method is given. The 
solution space is enlarged by adding additional variables and con- 
straints, so that the iteration to the desired solution is stable in the 
extended space. A modified version of this numerical technique has 
been used to obtain equilibrium fits to highly elongated DIII-D plasmas. 
The numerical equilibria are very difficult to obtain without the use of 
this technique and the plasmas are difficult to maintain in the 
tokamak. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is first to investigate, for a 
typical tokamak design with large poloidal field-shaping 
coil (PFC) distance, a bifurcated numerical solution curve 
as a function of flux loop position. The bifurcation proper- 
ties of this curve can be related to the practical existence of 
ideal MHD equilibria and practical tokamak design. This 

* This is a report of work sponsored by the U.S. Department of Energy 
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+ The U.S. Government’s right to retain a nonexclusive royalty-free 
license in and to the copyright covering this paper, for governmental 
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study was done for a canonical family of tokamaks at 
fixed number of PFCs, aspect ratio, triangularity, plasma 
current, and current profile parameters. Similar bifurcation 
curves have been addressed in other papers [S, 63. 

In earlier work, the viability of a tokamak was discussed 
in terms of thefi:rst robustnessparameter [ 1, 23 and the coif- 
loop condition number [3,4], which are related concepts. 
The first robustness parameter [ 1,2] assesses changes of 
solution with respect to changes in the current profile. For 
a given variation in current profile parameter, the first 
robustness parameter was defined to be (A, - AA,)/A,, 
where AA, denotes the maximum plasma cross-sectional 
area change when the profile parameter is so varied. It is 
clear that the first robustness parameter should be close 
to 1.0. 

The form of the solution space we are exploring depends 
on the boundary conditions formulated for the partial dif- 
ferential equilibrium equations, Grad-Shafranov equations 
(GSE) that we study. We incorporate the currents in the 
PFCs into the equation and solve the GSE with natural 
boundary conditions at infinity. The currents in the PFCs 
are determined by the condition that the flux attain certain 
prescribed values at a number of flux loops. 

Control of the plasma then depends on a feedback loop 
with three links. First, deviations in the plasma current dis- 
tribution are reflected in changes in the flux at the flux loops. 
Next, this information is translated into the changes in 
current in the PFCs needed to restore the flux at the flux 
loops to the desired values. This is determined with the aid 
of the matrix of the mutual induction, A, between the PFCs 
and the flux loops. Finally, changes in the current in the 
PFCs force restoration of the plasma current distribution 
back toward the desired state. 

In Refs. [3,4], the second link of this loop was studied 
and the importance of the second robustness parameter was 
established. This parameter is the condition number of 
the mutual inductance matrix A. It is a measure of this 
sensitivity of the response of the PFCs to changes in values 
of flux at the flux loops. This link is best behaved when the 
flux loops and the PFCs are not well separated. 
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When the flux loops are distant from the plasma, infor- 
mation on the plasma current distribution is degraded at 
the flux loops. It will be shown here that this can lead to a 
bifurcation, where there are several solutions all satisfying 
the same boundary condition. Thus, this paper is concerned 
with the consequences of the weakening of the first link of 
the feedback loop. 

There are several issues that arise when there are several 
competing solutions to the same problem. First, the control 
feedback loop described above will almost certainly be 
unstable for some of the solutions. Second, when there are 
several stable solutions, different initial conditions will lead 
to convergence of the iteration to different final states. The 
ease of obtaining given desired solutions depends strongly 
on the range of initial conditions that yield that state. These 
issues are further treated in Section 3. 

Another interesting question is whether the bifurcations 
of the type found here imply that the physical equilibrium 
becomes unstable. The physical problem is slightly different 
since it requires the safety factor profile to be constant 
during the bifurcation process, while here we require the 
current profile to be constant. While the two constraints 
differ, they are sufficiently close to suggest that the ideal 
n = 0 stability of these equilibria should be computed. 

Thus, it will be seen that, when the PFCs are far from the 
plasma, the feedback control loop is degraded either in the 
link between the plasma and the flux loops, or in the link 
between the flux loops and the PFCs. 

The second purpose of this paper is to describe the 
numerical technique that is used to obtain numerical equi- 
librium fits to data from elongated DIII-D plasmas. In the 
analysis of elongated DIII-D shots interesting problems in 
numerics arise. In particular, at elongations (usually) 
greater than or equal to 2.4, the numerical iteration schemes 
used in EFIT and GAEQ do not converge easily to the 
equilibrium solution consistent with the experimental data. 
A modification of the technique used to investigate the 
bifurcated numerical solution curve was used to resolve 
these difficulties. Preliminary discussion of modern control 
for tokamaks with highly elongated cross-sectional shape is 
also included. 

In order to obtain all the numerical solutions to a par- 
ticular ideal MHD equilibrium problem, it is sometimes 
necessary to modify the basic numerical algorithm while 
ensuring that the resulting solutions are a solution to the 
original problem. If such a modification is necessary to 
obtain a particular solution then the solution must have 
only a small neighborhood of close solutions and will there- 
fore be difficult to control. Note that for such solutions, the 
desired solution can be obtained by initializing the current 
grid with a current grid very close to the solution current 
grid. 

In particular, given the ideal MHD equilibrium problem 
(Section 2), another variable and constraint is added to the 

original problem. Then the value of the additional con- 
straint is adjusted to force the value of the additional 
variable to vanish. The new variable consists of the addition 
of a nonphysical PFC, a phantom PFC, with a corre- 
sponding nonphysical flux loop, a phantom flux loop, and 
the constraint is the specification of the flux on the phantom 
flux loop. As the flux value on the phantom flux loop is 
varied, the current on the phantom PFC varies. For one or 
more values of flux on the phantom flux loop, the current in 
the phantom PFC will be 0.0. Each of these flux values then 
corresponds to a numerical solution to the original ideal 
MHD equilibrium problem. 

2. PROBLEM STATEMENT 

Mathematically, the ideal MHD equilibrium problem is: 
given the elliptic operator 

L=A*, 

J,($, R), Ip, and tii, i = 1, . . . . m, and a finite number of 
PFCs, find a function $ and a region A, with boundary C, 
such that 

W = @~Jc+(+> RI inside A,, (1) 

Llj=O outside A,, (2) 

except at the PFCs, where it equals the PFC currents to be 
determined. 

The flux function Ic/ satisfies the boundary conditions 

$ = I++~ on a set of prescribed flux loops, 

$ constant on the boundary C,, 

* smooth across C,, 

$ = 0 at infinity, 

and the normalization condition 

(3) 

(4) 

(5) 

(6) 

s 2J4[$(R, Z), R] dR dZ= I,. (7) 
AP 

The equation above will be referred to as the 
Grad-Shafranov equation (GSE). 

The current J is nonvanishing only in a simply connected 
region A,, in which the flux contours form closed curves. If 
a level curve of $ has several disconnected branches, the 
current is nonvanishing only on one branch. The current 
depends on the flux Ic/ through the combination (II/ - 11/i)/ 
(11/i - tiO). Thus, the current distribution is fixed as I++~ and 
$ I vary. The quantity Il/,, is the maximum value of $ and @ i 
is the value on the boundary, C,. For the cases considered 
here, this surface is defined to be tangent to a prescribed 
limiting curve. The quantities I,!J,,, $i, and C, differ for 
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different equilibria, but the limiting surface is fixed. A,, C,, 
and locations L,, . . . . L, for Ic/,, . . . . $, can be seen in Fig. 1. 

The space of all solutions that can be obtained from this 
equilibrium problem is very large. In this calculation, a 
simplification was obtained by keeping all the parameters 
constant except the positions and flux values $i assigned to 
the flux loops. Then the positions of all the flux loops were 
made to depend on the single parameter p’ defined below. 
An equilibrium was calculated for a particular value of p’ 
such that the flux loops were at the physical limiter, and 
the flux values $, where chosen to be equal so that the 
equilibrium plasma boundary was close to the physical 
limiter. In the next section this is called the large volume 
solution. Then, for different positions of the flux loops, the 
flux values at the flux loops were chosen so that the large 
volume solution was reproduced to within numerical error. 
This is straightforward since the given solution provides 
values of $ everywhere, including all the potential locations 
of the potential locations of the flux loops. This procedure 
forces each of the families of equilibria that are found to 
depend on the single parameter p’. 

A numerical study was performed on an idealized, 
flexible class of tokamaks. These generic tokamaks 
(GENEROMAKS) are defined by coils located parametri- 
cally according to the expressions 

x = R, + pa cos( 8 + z sin I!!)), (8) 

y = pan sin( (3). (9) 

Here, a is the anticipated plasma minor radius and R, is 
the anticipated plasma major radius; K is the elongation 
and t is the triangularity. p is a measure of the distance 
of the surface on which the PFCs lie to the surface which 
is the physical limiter. For example, p = 2.0 corresponds 
to coils at distance 2.0a from the magnetic axis. The 
GENEROMAKS have n coils of the same size, at a 

FIG. 1. Region A, with boundary curve Cp and with flux loops at 
positions L,, L,, L,, . . . . L, outside Cp. 

distance p from the plasma and equally spaced in 8. The 
GENEROMAKS have m loops of the same size, at a dis- 
tance p’ from the plasma and equally spaced in 8. If p’ = p 
and m = n, the loops are at the center of the coils. If p’ = 1.0, 
the loops are on the physical limiter surface. If 1.0 < p’ < p, 
the loops are on a surface between the physical limiter 
surface and the PFC surface. In Fig. 2, the coil positions at 
p and the loop positions at p’ are labeled. 

The current profile used to obtain the bifurcated numerical 
equilibrium solution curve was a simple monotone profile 
with exponential functional form. The results obtained do 
not depend significantly upon the particular functional form 
and are similar for any simple monotone profile. The aspect 
ratio, toroidal magnetic field, plasma current, and tri- 
angularity, t, were fixed. 

In this paper, the GENEROMAK studied had aspect 
ratio 3.0, physical limiter elongation 2.6, and the PFCs were 
placed on the surface p = 2.4. The aspect ratio of the physi- 
cal limiter was constant but the aspect ratio of the solutions 
varied. The flux loops were placed on surfaces from p’ = 1 .O 
(physical limiter surface) to p’ = 2.4 (PFC surface). The 
results with p’ = 2.4 were not included, the results were as 
expected but numerical convergence of the equilibria was 
not good. The toroidal magnetic field was fixed at 4.0 T. 
The ideal MHD equilibrium program used to obtain these 
results was GAEQ. The calculations were done on the XMP 
at the MFE center in Livermore. An iteration of GAEQ 
takes less than a second, these particular equilibria con- 
verged in less than 15 iterations (note exception above). 

FIG. 2. Example of generomak with PFCs on surface defined by p in 
Eqs. (8) and (9), with flux loops on surface defined by p =p’ in Eqs. (8) 
and (9). 
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Depending upon the p’ used in boundary condition (3) 
above, the solution space attainable from the resulting 
numerical method can differ greatly in size and nature. 

3. STRUCTURE OF COMPLETE BIFURCATED 
SOLUTION CURVE 

It has been shown [14] that the numerical existence 
of equilibria is a strong function of the plasma-PFC 
separation, the PFC-loop separation, and the plasma cross- 
sectional shape. In a numerical simulation, the flux loops 
can be assumed to lie anywhere between the physical limiter 
and the PFCs. In this paper it is shown that the size and 
nature of the attainable solution space is a strong function 
of the position of the flux loops. In general, the closer the 
flux loops are placed to the physical limiter, the more sure 
is the existence of an equilibrium solution having its bound- 
ary at that surface. Empirically, in a numerical simulation, 

0 

u 0 

0 0 
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0 a 

0 

FIG. 3. Example of phantom PFCs and the corresponding phantom 
flux loops used to obtain the complete numerical bifurcated solution curve 
for this tokamak. The large squares are the PFCs and the solid black 
squares are the phantom PFCs. The small squares are the flux loops on the 
surface p = 1.9. The small squares with the arrows are the phantom flux 
loops. 

if the PFCs are distant from the plasma, then as the position 
of the flux loops is moved toward the PFCs, additional solu- 
tions appear that all satisfy the same boundary conditions. 

3.a. Phantom Coils 

In order to obtain all the numerical solutions, it is 
necessary to introduce a nonphysical PFC [7, 81, aphantom 
PFC with a corresponding nonphysical phantom flux loop, 
each appropriately placed. The numerical technique that 
is used to find the equilibria depends on starting with 
an approximate solution and then iterating. There are 
generally two issues for such procedures. First, is the desired 
solution a stable fixed point under the iteration? Second, if 
it is, does it have a large basin of attraction? That is, can this 
solution be obtained by starting the iteration from a large 
range of initial conditions? If the answer is negative for 
either question, the solution will be difficult or impossible to 
find. In that case, the convergence properties of the iteration 
can be changed by adding phantom PFCs, together with 
phantom flux loops. Solutions of the original problem are 
obtained when a solution is found with vanishing current in 
the phantom PFC. This is done by iterating on the flux in 
the phantom flux loop. If the phantom PFCs and flux loops 
are well placed, they can stabilize, or increase the basin of 
attraction of these solutions. In the case considered below, 
there are multiple solutions of the flux at the phantom flux 
loop that lead to vanishing current at the phantom PFC. 
Figure 3 shows an example of a phantom PFC used in this 
paper; the phantom PFC is the closed square, the other 
PFCs are open squares. The flux loops on the p’ = 1.9 
contour are the small open squares and the phantom flux 
loops are the small black squares indicated by the arrows. 
The corresponding flux loop is also shown in this figure. 

Here, two symmetric phantom PFCs and the corre- 
sponding phantom flux loops were used in order to obtain 
all three solutions for a next generation tokamak. As will be 
seen in Subsection 3b, this is an example of a dee-shaped 

5 0.0 
k.ii 
5 
0 -1.0 

-2.0 1 

FIG. 4. Sample curve of phantom PFC current versus flux at the 
phantom flux loop when there exist three bifurcated solutions to the ideal 
MHD equilibrium problem. 
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FIG. 5. Structure of the complete numerical equilibrium space for a 
tokamak with PFC distance p = 2.4 and limiter elongation K = 2.6; p’ is the 
distance between the flux loops and the physical limiter. 

tokamak with three distinct equilibrium solutions through- 
out much of its operating space. 

3.b. Structure of Bifurcated Solution Curve for a Given 
GENEROMAK 

It is shown that a tokamak with limiter elongation 
greater than 2.0 and with distant PFC systems can have 
three different types of solutions, a small volume solution, 

(a> (b) 
0 0 

0 0 0 0 

an intermediate volume solution, and a large volume 
solution. In these calculations, the large volume solution 
has boundary closest to the physical limiter. Figure 4 shows 
a sample curve of phantom PFC current versus flux at 
the phantom flux loop when there exist three bifurcated 
solutions to the ideal MHD equilibrium problem. When 
the flux was varied on the phantom flux loop through an 
appropriate range, one, two, or three equilibrium solutions 
were found, depending on the position of the flux loops. 
One of these solutions, the intermediate volume solution, 
can only be obtained by adding a phantom PFC. The small 
volume solution is the easiest to obtain numerically, 
especially when the flux loops are far from the plasma. The 
large volume solution can be obtained by using an exact 
current initialization when the flux loops are close to the 
plasma but it requires the use of a phantom PFC when the 
flux loops are far from the plasma. 

Figure 5 shows the structure of the complete numerical 
equilibrium space for a tokamak with PFC distance p = 2.4 
and physical limiter elongation K = 2.6. Here, the plasma 
volume is shown as a function of p’, the distance between 
the flux loops and the plasma. Note that when the flux loops 
are close to the plasma, the large volume solution is the only 
solution and is easy to obtain; this is done by choosing the 
flux values at the flux loops equal to the same appropriate 
constant values. When the flux loops are far from the plasma, 
the large volume solution is close to the unstable inter- 
mediate volume solution and therefore difficult to obtain in 
general. It is difficult to obtain a converged solution of the 

(cl 
0 

II 0 

: : 

0 0 0 0 0 0 

0 
0 0 

FIG. 6. Examples of the contour plots for (a) small, (b) intermediate, and (c) large volume solution at p = 1.9. Flux contours outside the plasma 
have been included in order to provide more information about the solutions. 
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solution is close to another solution. Here, the flux values at 
the flux loops are obtained by determining the flux values at 
these locations in the initial large volume solution. These 
flux values are interpolated from the initial equilibrium 
solution when p’ = 1.0. The flux values are, in general, not 
equal when p’ # 1.0. Figure 6 shows the contour flux plots 
for the small, intermediate, and large solution at p’ = 1.9. 
The currents in the PFCs, the phantom PFC, and the 
plasma current are given in Table I. The constant flux 
value of the $ = It/i is also in the table. The dotted branch is 
the intermediate volume solution only obtainable with the 
use of the phantom PFC. 

3.~2. Obtaining Numerical Equilibrium Fits for Highly 
Elongated DIII-D Data 

From the result of earlier [ 1,9] numerical experiments, it 
appears that throughout most of the DIII-D operating 
space, just one numerical solution exists. Only for non- 
standard DIII-D plasmas such as highly elongated plasmas 
does there exist more than one solution. In the analysis of 
elongated DIII-D shots interesting problems in numerics 
arise. In particular, at elongations (usually) greater than 
or equal to 2.4, the numerical iteration schemes used in 
EFIT and GAEQ do not converge easily to the equilibrium 
solution consistent with the experimental data. Here, the 
technique was used to obtain the solution which corre- 
sponded to the experimental data. 

Figure 7 shows the phantom PFC and the corresponding 
phantom flux loop used to obtain the elongated equilibrium 
fits to DIII-D data described in this paper. The DIII-D 
PFCs and the flux loops are also shown. The currents in the 
PFCs and the current in the phantom PFC are given in 
Table II. In this work, the other non-physical solutions were 

TABLE I 

Coil Currents and Plasma Currents 
for Cases a, b, c in Fig. 6 

Volume (cm3) 23.62 45.01 52.65 

$K 0.938 0.558 0.424 

IP 0.40 + 07 0.40 + 07 0.40 + 07 

Coil no. I, &A) Ip W) I, NV 

1 0.69 + 07 0.71 + 07 0.72 + 07 

ph 0.55 + 02 -0.97 + 02 -0.19 +02 
2 0.17 + 08 0.17 + 08 0.17 +08 
3 - 0.36 + 08 -0.36 + 08 - 0.36 + 08 
4 0.27 + 10 0.27 + 10 0.27 + 10 
5 -0.11 +11 -0.11 + 11 -0.11 + 11 
6 0.93 + 10 0.93 + 10 0.93 + 10 
7 -0.53 + 09 -0.53 + 09 -0.53 +09 
8 0.50 + 07 0.47 + 07 0.47 + 07 

not explored; only the equilibria which lit the experimental 
data from the DIII-D shots were obtained. The placement 
of the phantom PFC and flux loop is not restricted but can 
vary significantly. Certain placements lead to the desired 
solution more quickly. The placement shown in the figure 
worked well for all of the experimental cases we considered. 

The elongated equilibria are more difficult to control 
than the less elongated equilibria. Earlier in Ref. [3], the 
singular values of the inductance matrix were discussed with 
respect to being able to obtain a particular plasma cross- 
sectional shape. As expected, with increasingly complex 
cross-sectional shape more singular values must be kept in 
the inductance matrix in order to obtain the desired plasma 
cross-sectional shape. This is equivalent to having to control 
more plasma parameters. This, although the DIII-D induc- 
tance matrix has 18 singular values, a lower elongation dee 
can be obtained with only seven singular values in the 
inductance matrix and completely preserve the plasma 
cross-sectional shape. However, a divertor plasma or highly 
elongated plasma requires nine or more singular values in 

FIG. 7. Example of a phantom PFC (small black square) and corre- 
sponding phantom flux loop (small black square with arrow) used to 
obtain numerical equilibrium tits for highly elongated DIII-D data. The 
DIII-D PFCs are shown and the small black squares without arrows are 
the DIII-D flux loops. 
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TABLE II 

Coil Currents and Plasma Currents for the 
DIII-D Equilibrium Shown in Fig. 7 

Volume (cm3) 20.497 

plasma, and conversely, if the PFCs must be far from the 
plasma, the required plasma cross-section should not be 
strongly shaped. This was demonstrated in Refs. [ 141, 
where the importance of the first and second robustness 
parameters was established. 

$K 0.00445 9 -0.83 + 04 

1, @A) 0.11 +07 10 -0.25 + 06 
1 - 0.26 + 06 11 -0.22 + 06 
2 -0.21 +06 12 -0.14+06 
3 -0.14+06 13 -0.28 + 02 
4 -0.28 + 05 14 0.18 + 05 

ph -0.21 + 02 15 -0.19 +06 
5 0.14 + 05 16 -0.19 +06 
6 -0.17 f06 17 -0.29 + 04 
7 - 0.20 + 06 18 -0.68+04 
8 0.58 + 04 

the inductance matrix, depending on the complexity of the 
plasma cross-sectional shape. In addition, with increasing 
elongation, the n = 0, m = 1 mode evolves into the n = 0, 
m = 3 mode [lo] which is much more difficult to control. 

From the present study, the importance of a third 
robustness parameter is established, namely the bifurcation 
number of the solution space. It is apparent that for large 
PFC-plasma distance of highly elongated plasmas, the 
structure of the numerical bifurcated equilibrium solution 
space becomes increasingly complex and desirable solutions 
become more difficult to attain as the flux loops are moved 
farther from the plasma. Our results together show that with 
increasing PFC distance, with increasing plasma elongation 
and with more strongly shaped plasma cross section, the 
empirical probability of a robust plasma equilibrium 
decreases and increasingly severe control problems arise no 
matter where the flux loops are placed. 

Figure 7 is an example of a DIII-D equilibrium lit 
obtained by using the numerical technique described above. 
In particular, this is S63422 at 2654 ms, note that the 
elongation is 2.4 the upper triangularity is 0.9 and the lower 
triangularity is 0.8. This equilibrium has an n = 0, m = 3 
mode. 

All control problems will become more difficult for igni- 
tion tokamaks, it becomes more difficult to place poloidal 
field-shaping coils close to the plasma to shape the plasma, 
and it becomes more difficult to place a wall close to the 
plasma to stabilize the low n modes. Also, ignition will lead 
to unknown current profiles. 
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